This page presents the full results for Experiment 2, which assesses the impact of mode seeking regularization and the efficacy of the fine-tuning phase. We evaluate a grid of mode seeking hyperparameters (λ, ε) by training 3 independent models for each combination and each dataset. We inspect the results obtained after the adversarial phase, then after the fine-tuning phase, and we compare the results with and without pre-training the State Prediction Network (SPN). λ = 0 means that mode seeking is disabled.

Between the adversarial phase and the fine-tuning phase, the cells in the tables correspond. For example, the first model with λ=0 achieved a minimum modulation loss of 0.198. When SPN pre-training was not chosen, it achieved 0.178 after fine-tuning; when SPN pre-training was performed, it achieved 1.359 after fine-tuning.

For the modulation loss, we show the value obtained during each phase at the best checkpoint.

For the spectral loss, we show the value obtained during each phase at the checkpoint minimizing the spectral loss under the condition that the modulation loss is below 0.9. If this condition cannot be met, the color is purple.

These tables display the individual values for all models. Further below are the averaged values.

Slow-LFO Dataset

Modulation loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.198
0.269
0.209
0.923
0.206
0.297
0.200
0.212
0.443
0.01
0.171
0.253
0.151
1.069
0.181
0.111
0.192
0.054
0.581
0.1
0.169
0.215
0.128
0.222
0.063
0.084
0.117
0.180
0.217
1
0.223
0.155
0.098
0.183
0.187
0.201
0.166
0.242
0.157

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.178
0.358
0.115
1.328
0.086
0.411
0.752
0.197
0.086
0.01
0.125
0.653
0.149
0.277
0.441
0.134
0.238
0.144
0.052
0.1
0.161
0.407
0.403
0.177
0.113
0.113
0.208
0.067
0.383
1
0.743
0.485
0.469
0.270
0.161
0.159
0.108
0.295
0.406

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
1.359
0.594
0.027
1.302
0.304
0.123
0.190
0.197
0.042
0.01
0.348
0.521
0.365
0.069
0.175
0.089
0.213
0.053
0.359
0.1
0.178
0.197
0.275
0.158
0.040
0.374
0.309
0.193
0.342
1
0.663
0.173
0.160
0.194
0.758
0.155
0.057
0.545
0.215
2026-02-05T15:48:11.636719 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Spectral (MR-STFT) loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.892
0.914
0.870
NaN
0.901
1.000
0.943
0.957
0.940
0.01
0.949
0.919
0.928
NaN
0.936
0.933
0.919
0.920
1.045
0.1
0.906
0.924
1.116
0.963
0.897
1.006
1.090
1.090
0.968
1
1.452
1.110
1.069
1.326
1.017
1.106
1.158
1.189
1.005

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.765
0.725
0.644
NaN
0.708
0.724
0.676
0.755
0.643
0.01
0.804
0.680
0.748
0.664
0.708
0.806
0.711
0.770
0.750
0.1
0.770
0.665
0.732
0.782
0.752
0.790
0.766
0.730
0.682
1
0.707
0.757
0.701
0.746
0.775
0.721
0.774
0.766
0.764

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
NaN
0.719
0.620
NaN
0.717
0.733
0.693
0.737
0.673
0.01
0.803
0.700
0.766
0.640
0.701
0.804
0.687
0.780
0.781
0.1
0.740
0.680
0.732
0.747
0.715
0.793
0.750
0.705
0.680
1
0.715
0.757
0.739
0.726
0.777
0.772
0.806
0.777
0.781
2026-02-05T15:48:11.753711 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Fast-LFO Dataset

Modulation loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.025
0.055
0.035
0.041
0.069
0.030
0.034
0.040
0.518
0.01
0.036
0.024
0.030
0.230
0.030
0.043
0.055
0.036
0.025
0.1
0.175
0.200
0.039
0.089
0.036
0.033
0.033
0.224
0.027
1
0.401
0.046
0.141
0.080
0.058
0.365
0.289
0.030
0.033

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
1.038
0.593
0.388
0.137
0.318
0.304
0.802
0.360
1.045
0.01
1.038
1.032
0.515
0.980
0.820
1.044
0.233
0.309
0.436
0.1
1.029
0.549
0.392
0.626
0.694
0.692
1.007
0.666
1.016
1
0.340
0.958
0.765
0.816
0.655
0.488
0.568
0.686
0.372

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.432
0.185
0.643
0.114
0.561
0.230
0.693
0.489
0.654
0.01
0.704
0.554
0.694
1.036
0.612
1.030
0.568
0.225
0.529
0.1
0.581
0.565
0.917
0.512
0.459
0.670
0.138
0.274
0.225
1
0.358
0.678
0.956
0.740
0.651
0.293
0.609
0.659
0.423
2026-02-05T15:48:11.878256 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Spectral (MR-STFT) loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.884
0.880
0.861
0.860
0.904
0.902
0.895
0.910
0.856
0.01
0.864
0.889
0.932
0.861
0.962
0.854
0.921
0.838
0.877
0.1
1.087
0.938
0.993
0.984
0.919
0.960
1.012
1.011
1.036
1
1.044
1.315
0.974
1.627
1.017
1.614
0.952
1.016
1.127

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
NaN
0.576
0.604
0.479
0.643
0.601
0.658
0.598
NaN
0.01
NaN
NaN
0.594
NaN
0.620
NaN
0.573
0.639
0.627
0.1
NaN
0.617
0.636
0.664
0.695
0.641
NaN
0.702
NaN
1
0.558
NaN
0.620
0.761
0.705
0.614
0.762
0.786
0.727

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.592
0.534
0.612
0.481
0.646
0.606
0.662
0.595
0.544
0.01
0.660
0.647
0.614
NaN
0.626
NaN
0.577
0.647
0.632
0.1
0.639
0.623
NaN
0.653
0.635
0.636
0.642
0.614
0.622
1
0.572
0.676
NaN
0.711
0.708
0.587
0.768
0.732
0.740
2026-02-05T15:48:11.993549 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Averaged Values

Warning: the aggregation ignores not-a-number values (i.e. models which did not learn any modulation). When this occurs, the cell has a purple background
.

Slow-LFO Dataset

Modulation loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.328
0.01
0.191
0.454
0.276
0.1
0.171
0.123
0.171
1
0.159
0.190
0.189

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.390
0.01
0.309
0.284
0.144
0.1
0.323
0.134
0.219
1
0.566
0.197
0.270

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.460
0.01
0.411
0.111
0.208
0.1
0.217
0.191
0.281
1
0.332
0.369
0.272
2026-02-05T15:48:12.139063 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Spectral (MR-STFT) loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.927
0.01
0.932
0.935
0.961
0.1
0.982
0.955
1.050
1
1.210
1.150
1.117

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.705
0.01
0.744
0.726
0.744
0.1
0.722
0.775
0.726
1
0.722
0.747
0.768

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.699
0.01
0.756
0.715
0.749
0.1
0.717
0.752
0.712
1
0.737
0.758
0.788
2026-02-05T15:48:12.267233 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Fast-LFO Dataset

Modulation loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.094
0.01
0.030
0.101
0.038
0.1
0.138
0.053
0.095
1
0.196
0.168
0.117

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.554
0.01
0.862
0.948
0.326
0.1
0.657
0.671
0.896
1
0.688
0.653
0.542

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.444
0.01
0.650
0.893
0.440
0.1
0.688
0.547
0.212
1
0.664
0.562
0.564
2026-02-05T15:48:12.386873 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/

Spectral (MR-STFT) loss

Adversarial Phase

ε →
λ ↓
0.001 0.01 0.1
0
0.884
0.01
0.895
0.892
0.879
0.1
1.006
0.954
1.020
1
1.111
1.419
1.031

Fine-tuning Phase (no SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.594
0.01
0.594
0.620
0.613
0.1
0.627
0.667
0.702
1
0.589
0.694
0.758

Fine-tuning Phase (with SPN pre-training)

ε →
λ ↓
0.001 0.01 0.1
0
0.586
0.01
0.641
0.626
0.619
0.1
0.631
0.641
0.626
1
0.624
0.669
0.747
2026-02-05T15:48:12.508012 image/svg+xml Matplotlib v3.10.7, https://matplotlib.org/